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4.1 GLUE

The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018a) is a col-
lection of diverse natural language understanding
tasks. Detailed descriptions of GLUE datasets are
included in Appendix B.1. _ for dassification

To fine-tune on GLUE, we represent the in
sequence (for single sentence or sentence{aipr—‘:;
as described in Section 3, and use the final hid-
den vector C € R corresponding to the first
input token ([CLS]) as the aggregate representa-
tion. The only new parameters introduced during
fine-tuning are classification layer weights W &
RE*H where K is the number of labels. We com-
pute a standard classification loss with C' and W,
i.e., log(softmax(CW7)).

"For example, the BERT SQuAD model can be trained in

around 30 minutes on a single Cloud TPU to achieve a Dev
F1 score of 91.0%.

8See (10)in https://gluebenchmark.com/faq.
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4.1 GLUE: Result

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B  MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73:3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52:1 85.8 88.9 66.4 79.6
BERT| ArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.®* BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.



4.2 SQUAD 1.1

What was another term used for the ol crisis?

Ground Truth Answers: fitst@il'Sheekk shock shock first oil
shock shock

Prediction: shock

The 1973 oil crisis began in October 1973 when the members of the
Organization of Arab Petroleum Exporting Countries (OAPEC, consisting of the
Arab members of OPEC plus Egypt and Syria) proclaimed an oil embargo. By the
end of the embargo in March 1974, the price of oil had risen from US$3 per
barrel to nearly $12 globally; US prices were significantly higher. The embargo
caused an oil crisis, or "shock”, with many short- and long-term effects on global
politics and the global economy. It was later called the "fifstiGilShoek", followed
by the 1979 oil crisis, termed the "second oil shock."

Only new parameters: Start vector and end
vector

eSTi

W=y o

As shown in Figure 1, in the question answer-
ing task, we represent the input question and pas-

sage as a single packed sequence, with the ques-

tion using the A embedding and the passage using
the B embedding. We only introduce a start vec-
tor S € R and an end vector E € R during
fine-tuning. The probability of word 7 being the
start of the answer span is computed as a dot prod-
uct between 7; and S followed by a softmax over

all of the words in the paragraph: P; = T 55
The analogous formula is used for the end of the
answer span. The score of a candidate span from
position i to position j is defined as S-T; + E-T},
and the maximum scoring span where j > 17 is
used as a prediction. The training objective is the
sum of the log-likelihoods of the correct start and
end positions. We fine-tune for 3 epochs with a
learning rate of 5e-5 and a batch size of 32.

eS'Ti input: questionSEPpagéage
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4.2 SQUAD 1.1

As shown in Figure 1, in the question answer-
ing task, we represent the input question and pas- )
sage as a single packed sequence, with the ques- T4
tion using the A embedding and the passage using
the B embedding. We only introduce a start vec-
tor S € R and an end vector E € R during
fine-tuning. The probability of word 7 being the
start of the answer span is computed as a dot prod-

* |oss

def compute_loss(logits, positions):
one_hot_positions = tf.one_hot(
positions, depth=seq_length, dtype=tf.float32)
log_probs = tf.nn.log_softmax(logits, axis=-1)

uct between 7; and S followed by a softmax over loss = -tf.reduce_mean(
all of the words in the paragraph: P, = ST tf.reduce_sum(one_hot_positions * log_probs, axis=-1))
. T — Sl
D ; o return loss

The analogous formula is used for the end of the

answer span. The score of a candidate span from

position i to position j is defined as S-T; + E-T},

and the maximum scoring span where ] > is end_loss = compute_loss(end_logits, end_positions)
.. e s lo o

used as a predlc'tlon.. The training objective is the 0 - total_loss = (start_loss + end loss) / 2.0

sum of the log-likelihoods of the correct start and + /o5 =

end positions. We fine-tune for 3 epochs with a

learning rate of 5e-5 and a batch size of 32.

start_loss = compute_loss(start_logits, start_positions)

https://github.com/google-
research/bert/blob/master/run_squad.py
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tf: squad O[O & Br=7]

examples = []

for entry in input_data: for ga in paragraph["qgas"]:
for paragraph in entry["paragraphs"]: qas_id = ga["id"]
paragraph_text = paragraph["context"] question_text = qgal"question"]
doc_tokens = [] start_position = None

end_position = None
orig_answer_text = None

char_to_word_offset = []

prev_is_whitespace = True

for ¢ in paragraph_text:
if is_whitespace(c):

is_impossible = False
if is_training:

prev_is_whitespace = True if FLAGS.version_2_with_negative:

else: is_impossible = gal["is_impossible"]
if prev_is_whitespace: if (len(gal["answers"]) != 1) and (not is_impossible):
doc_tokens.append(c) raise ValueError(
else: "For training, each question should have exactly 1 answer.")
doc_tokens[-1] += ¢ if not is_impossible:
prev_is_whitespace = False answer = gal["answers"][0]
char_to_word_offset.append(len(doc_tokens) - 1) orig_answer_text = answer["text"]

answer_offset = answer["answer_start"]

answer_length = len(orig_answer_text)

start_position = char_to_word_offset[answer_offset]

end_position = char_to_word_offset[answer_offset + answer_length -
1]
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tf: OOl =2&

. . tok_start_position = None
tok_to_orlg_lndex - [] tok_end_position = None
orig_to_tok_index = [] if is_training and example.is_impossible:
all_doc_tokens = [] tok_start_position = -1
. . tok_end_position = -1
for (i, token) in enumerate(example.doc_tokens): if is_training and not example.is_impossible:
orig_to_tok_index.append(len(all_doc_tokens)) tok_start_position = orig_to_tok_index[example.start_position]

b tok — tokeni tokeni (token) if example.end_position < len(example.doc_tokens) - 1:
Sub_tokens = tokenizer.tokenlzeitoken tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
for sub_token in sub_tokens: else:

tok_to_orig_index.append(i) toKﬁn¢pos¢1¢1=lenwlLﬁongQnﬂ -1

ok_start_position, tok_end_position) = _improve_answer_span
(tok_start t tok d t ) i (
all_doc_tokens.append(sub_token) all_doc_tokens, tok_start_position, tok_end_position, tokenizer,

example.orig_answer_text)
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4.2 SQUAD 1.1: maximum scoring span

As shown in Figure 1, in the question answer- ¢, .
ing task, we represent the input question and pas-

sage as a single packed sequence, with the ques-

tion using the A embedding and the passage using r -
the B embedding. We only introduce a start vec- #

tor S € R and an end vector E € R during
fine-tuning. The probability of word ¢ being the
start of the answer span is computed as a dot prod-
uct between 7; and S followed by a softmax over

all of the words in the paragraph: P; = %
The analogous formula is used for the endJof the

answer span. The score of a candidate span from
position i to position j is defined as S-T; + E-T},
and the maximum scoring span where j > 7 is

used as a prediction. The training objective is the lo4 >

sum of the log-likelihoods of the correct start and
end positions. We fine-tune for 3 epochs with a
learning rate of 5e-5 and a batch size of 32.

* https://ai.stackexchange.com/qu
estions/11900/understanding-
how-the-loss-was-calculated-for-
the-squad-task-in-bert-
paper/11947#11947
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tok_start_position: answer ISESEEPN

tok_end_position: answer & 2| X|
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if not(tok_start_position >= doc_start and tok_end_position <=
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doc_start 2f tok_end_position <= doc_endO|Ct. 212§ A{ OFO}
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ANY 22, start_position = None

end_position = None
if is_training and not example.is_impossible:
# For training, if our document chunk does not contain an annotation
# we throw it out, since there is nothing to predict.
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
out_of_span = False
if not (tok_start_position >= doc_start and
tok_end_position <= doc_end):
out_of_span = True
if out_of_span:
start_position = 0
end_position = 0
else:
doc_offset = len(query_tokens) + 2
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset

if is_training and example.is_impossible:
start_position = @
end_position = 0



4.3 SQUAD 2

BERT: SQUAD 2.0

» Use token 0 ([CLS]) to emit logit for “no answer”

* “No answer” directly competes with answer
span
* Threshold is optimized on dev set

What action did the US begin that started the second oil shock?
Ground Truth Answers: <No Answer>
Prediction: <No Answer>

The 1973 oil crisis began in October 1973 when the members of the
Organization of Arab Petroleum Exporting Countries (OAPEC, consisting of the
Arab members of OPEC plus Egypt and Syria) proclaimed an oil embargo. By the
end of the embargo in March 1974, the price of oil had risen from US$3 per
barrel to nearly $12 globally; US prices were significantly higher. The embargo
caused an oil crisis, or "shock”, with many short- and long-term effects on global
politics and the global economy. It was later called the "fifsEiGiliShaek", followed
by the 1979 oil crisis, termed the "second oil shock."

We use a simple approach to extend the SQuAD

o'9
- Q{\\t vl.1 BERT model for this task. We treat ques-
e tions that do not have an answer as having an an-
nagf 11 3
| < swer span with start and end at the [CLS] to-

N~ ken. The probability space for the start and end
: answer span positions is extended to include the
position of the [CLS] token. For prediction, we
7 N w 'Y T compare the score of the no-answer span: Spy11 =
o S-C + E-C to the score of the best non-null span
s;j =max;>;S-1; + E-T;. We predict a non-null
answer when s; j; > Spu11 + 7, where the thresh-
old 7 is selected on the dev set to maximize F1.
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Huggingface: QA

sequence_output = outputs[0]

* huggingfaceOl| Al =... max

logits = .gqa_outputs(sequence_output)
| h o L:I o D:I I I_I: X E start_logits, end_logits = logits.split(1, dim=-1)
engt = O — | (@) [ R start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()

e 2|10 O 7|0 A YEI EZ 0|, v |
—_ LR start_positions is not and end_positions is not

F QAO]| A 5125 ar oo
(start_| t o ()) > 1:
QA A pa Ssage 7 5 1 2 E staiti;osFi):si;n;o:ss‘i;:_pos;tions.squeeze(—l)
- (end_ iti .size()) i3
LD:| 9 E O-I ;-” OH R???? endi;os?:i:n:ozsef\;isositions.squeeze(—l)
ignored_index : start_lbgits.siie(l)

® https://githUb.Co m/h ugg”]gfa Ce/tr start_positions = start_'pclmsitions.clamp('ﬂ, ignor'*ed_index)

end_positions = end_positions.clamp(@, ignored_index)

a n Sfo rm e rS/I SS u eS/ 1 79 1 loss_fct = CrossEntropyLoss(ignore_index=ignored_index)

start_loss = loss_fct(start_logits, start_positions)

» TH AL SR0ME F2 F2 o o el
O 7|SH &= OH—I7}???



https://github.com/huggingface/transformers/issues/1791

4.4 SWAG

* Run each Premise + Ending through BERT
 Produce logit for each pair on token 0 ([CLS])

When fine-tuning on the SWAG dataset, we ;e T+

construct four input sequences, each containing —— v g
A girl is going across a set of monkey bars. She the concatenation of the given sentence (sentence r_f/fr\\/’_’\:l
A) and a possible continuation (sentence B). The ~ 1 Y
only task-specific parameters introduced is a vec-
tor whose dot product with the [CLS] token rep-
resentation C' denotes a score for each choice
which is normalized with a softmax layer.

(i) jumps up across the monkey bars.
(ii) struggles onto the bars to grab her head.

Qseph L

(iii) gets to the end and stands on a wooden plank.

(iv) jumps up and does a back flip.

eV-Cz'

4 L
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5. Conclusion

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* Learn through masked language modeling task

» Use large-scale data and large-scale model

BERT (Ours)

OpenAl GPT

Unidirectional

Bi-LSTM

BERT: Pre-training of deep bidirectional transformers for language understanding, NAACL'19

6 Conclusion

Recent empirical improvements due to transfer
learning with language models have demonstrated
that rich, unsupervised pre-training is an integral
part of many language understanding systems. In
particular, these results enable even low-resource
tasks to benefit from deep unidirectional architec-
tures. Qurrmajorrcontribution is further general-
1zing these findings toldeepbidirectional architec:
fures, allowing the same pre-trained model to suc-
cessfully tackle a broad set of NLP tasks.



